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Duality relation for frustrated spin models
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We consider discrete spin models on arbitrary planar graphs and lattices with frustrated interactions. We first
analyze the Ising model with frustrated plaquettes. We use an algebraic approach to derive the result that an
Ising model with some of its plaquettes frustrated has a dual model which is an Ising model with an external
field ip/2 applied to the dual sites centered at frustrated plaquettes. In the case where all plaquettes are
frustrated, this leads to the known result that the dual model has a uniform fieldip/2, whose partition function
can be evaluated in the thermodynamic limit for regular lattices. The analysis is extended to a Potts spin glass
with analogous results obtained.
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I. THE FRUSTRATED ISING MODEL

A central problem in the study of lattice-statistical pro
lems is the consideration of frustrated spin systems~see, for
example, Refs.@1–4#!. A particularly useful tool in the study
of spin systems is the consideration of duality relations~see,
for example, Refs.@5,6#!. Here, we apply the duality consid
eration to frustrated discrete spin systems.

We consider first the Ising model on anarbitrary planar
graphG. A planar graph is a collection of vertices and~non-
crossing! edges. Place Ising spins at vertices ofG, which
interact with competing interactions along the edges. Den
the interaction between sitesi and j by 2Ji j 52Si j J, where
Si j 561 andJ.0. Then the Hamiltonian is

H~s;S!52(
^ i , j &

Si j Js is j , ~1!

wheres i561 is the spin at the sitei and the summation is
taken over all interacting pairs.

The Hamiltonian~1! plays an important role in condense
matter physics and related topics. RegardingSi j as a
quenched random variable governed by a probability dis
bution, the Hamiltonian~1! leads to the Edwards-Anderso
model of spin glasses@7#. By taking a differentSi j , the
Hamiltonian becomes the Hopfield model of neural netwo
@8#. Here, we consider the Hamiltonian~1! with fixed
plaquette frustrations.

Let G haveN sites andE edges. Then it has

N* 5E122N ~Euler relation! ~2!

faces, including one infinite face containing the infinite r
gion and N* 21 internal faces which we refer to a
plaquettes. The parity of a face is the product of the edgeSi j
factors around the face which can be either11 or 21. A
face isfrustratedif its parity is 21. An Ising model is frus-
trated if any of its plaquettes is frustrated, and is fully~to-
tally! frustrated if every plaquette is frustrated. The fu
frustrated model is also known as the odd model of the s
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glass@1#. As the parity of the infinite face is the product o
the parities of all plaquettes, the parity of the infinite face
a totally frustrated Ising model is21 for N* 5 even and11
for N* 5 odd. An example of a full frustration is the trian
gular model withSi j 521 for all nearest neighbor sitesi , j .

The values of parity associated with all plaquettes defin
‘‘parity configuration’’ which we denote byG. The set of
interactions$Si j % corresponding to a givenG is not unique.
For the triangular model, for example, any$Si j % which has
either one or threeSi j 521 edges around every plaquette
totally frustrated. For a given$Si j % andG, the partition func-
tion is the summation

Z~$Si j %!5 (
s1561

••• (
sN561

)
E

eSi j Js is j , ~3!

where the product is taken over theE edges ofG.

A. Gauge transformation

A gaugetransformation is site-dependent redefinition
the up~down! spin directions. Mathematically, a gauge tran
formation transforms the spin variables according to@2#

s i→s i85wis i , i 51, . . . ,N. ~4!

In the above, ifwi511, the original definition of up~down!
spin directions is maintained, and ifwi521, the definitions
of up ~down! are exchanged. Under the gauge transform
tion, theSi j in Eq. ~1! transforms as follows:

Si j →Si j8 5wiSi j wj ; i , j . ~5!

Sincewi
251, we have

H~s;S!5H~s8;S8!. ~6!

Clearly, the gauge transformation~5! leaves the parity con-
figurationG unchanged, i.e.,
©2003 The American Physical Society11-1
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)
face

Si j 5)
face

Si j8 ; face. ~7!

For each parity configurationG, there are 2N21 different
$Si j % patterns consistent with it. To see this we note in E
~5!, each of the 2N choices of$wi% leads to a new$Si j8 %
except the negation of allwi which leaves$Si j % unchanged.
Conversely, any two sets of interactions$Si j % and $Si j8 % for
the sameG are related by a gauge transformation which c
be constructed as follows. Starting from any spin, say spi
assign the valuew1511. One next builds up the graph b
adding one site~and one edge! at a time. To the site 2 con
nected to 1 by the edge$12%, one assigns the factorw2

5w1 S12 S128 , which yieldsw1 S12w25S128 consistent to Eq.
~5!. Proceeding in this way around a plaquette until an ed
say$n1%, completes a plaquette. At this point, one has

wnSn1w15S )
plaquette

Si j D S )
plaquette

Si j8 DSn18 5Sn18 , ~8!

which is again consistent to Eq.~5!. Continuing in this way,
one constructs allwi which transform$Si j % into $Si j8 %. Note
that if we had started withw1521, we would have resulted
in the negation of allwi . Thus, the bijection between th
2N21 sets$Si j % and 2N21 gauge transformations is one
one.

In addition to Eq. ~7!, the gauge transformation als
leaves the partition function invariant@9,10#, i.e.,

Z~$Si j %!5(
$s%

)
E

eSi j Js is j5 (
$s8%

)
E

eSi j8 Js i8s j85Z~$Si j8 %!.

~9!

As a result, the partition function only depends onG and we
can rewrite Eq.~3! as

Z~G!522(N21)(
$Si j %

Z~$Si j %!, ~10!

where the summation is over all 2N21 distinct $Si j % consis-
tent with the parity configurationG for the same partition
function. This expression of the partition function is used
derive the duality relation in ensuing sections.

B. The fully frustrated Ising model

For our purposes, it is instructive to consider first the c
of full frustration. Duality properties of fully frustrated
model have previously been considered by a number of
thors @2,4# for regular lattices. We present here an altern
formulation applicable to arbitrary graphs and arbitrary fru
tration.

The graphD dual toG hasN* sites each residing in a fac
of G, andE edges each intersecting an edge ofG. We restrict
to N* 5 even so that all faces ofG including the infinite face
are frustrated. This restriction has no effect on the taking
the thermodynamic limit in the case of regular lattices. Sin
the signsSi j around each face are subject to the constra
)Si j 521, we introduce in the summand of Eq.~10! a face
02611
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factor (12)Si j )/2 and sum overSi j 561 independently.
Similarly, writing s i j 5s is j , we can replace summation
overs i561 in Eq.~10! by s i j 561 by introducing a factor
(11)s i j )/2 to each face. Thus, Eq.~10! becomes

ZFF5F2•22(N21)

22N* G (
$s i j %

(
$Si j %

F)
E

eSi j s i j JG
3)

face
F S 11) s i j D S 12) Si j D G , ~11!

where the subscript FF denotes full frustration, and the e
factor 2 in Eq.~11! is due to the 2→1 mapping froms i to
s i j .

For a face havingn sides, we rewrite the face factors a

11) s i j 5 (
m56

) F~s i j ;m!, ~12!

12) Si j 5 (
n56

) G~Si j ;n!, ~13!

where each product hasn factors

F~s;m!5dm11sdm2 ,
~14!

G~S;n!5dn11Svndn2 ,

d is the Kronecker delta function, andvn5(21)21/n

5e2 ip/n.
We now regardm and n as indices of two Ising spins

residing at each dual lattice site. After carrying out summ
tions overs i j andSi j , the partition function~11! becomes

ZFF522E2N* (
$m%

(
$n%

)
E

B~m,n;m8,n8!, ~15!

where we have made use of the Euler relation~2! andB is a
Boltzmann factor given by

B~m,n;m8,n8!5 (
s561

(
S561

eSsJF~s;m!

3F~s;m8!G~S;n!G~S;n8!. ~16!

Here, G(S;n8) is given by Eq. ~14! with vn→vn8
5e2 ip/n8 and the two faces containing spins$m,n% and
$m8,n8% have, respectively,n andn8 sides.

Substituting Eq.~14! into Eq. ~16! and making use of the
identities

dm1dm811dm2dm825~11mm8!/2,
~17!

dm1dm821dm2dm815~12mm8!/2,

one obtains

B~m,n;m8,n8!52A~11mm8!coshJ12B~12mm8!sinhJ,
~18!

where
1-2
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A5dn1dn811vnvn8dn2dn82 ,
~19!

B5vndn2dn811vn8dn1dn82 .

We number the four states$m,n%5$1,1%,$2,2%,
$2,1%,$1,2% by 1,2,3,4, respectively. The Boltzmann fa
tor ~18! can be conveniently written as a 434 matrix

B~m,n;m8,n8!5S B11 B12 0 0

B21 B22 0 0

0 0 B11 B12

0 0 B21 B22

D , ~20!

where

B1154 coshJ, B1254vn8sinhJ,
~21!

B2154vnsinhJ, B2254vnvn8coshJ.

Thus, the partition function of the$m,n% spin model is twice
that of an Ising model on the dual lattice. The exchan
coupling constantK and the magnetic fieldh in the dual
model are determined by

B115DeK1(h/n)1(h8/n8), B125De2K1(h/n)2(h8/n8),
~22!

B215De2K2(h/n)1(h8/n8), B225DeK2(h/n)2(h8/n8).

Here,n andn8 are the number of edges incident at the tw
dual sites, respectively.

The solution of the above equations gives

e22K5tanhJ.0, D54~vnvn8!
1/2AsinhJ coshJ,

~23!
e2(h/n)51/vn5eip/n, e2(h8/n8)51/vn85eip/n8,

or equivalently

K52
1

2
ln~ tanhJ! and h5h85

ip

2
. ~24!

Thus, we have established the equivalence

ZFF~J!52N21i N* ~sinhJ coshJ!E/2ZIsing
(D) S i

p

2
,K D , ~25!

whereZIsing
(D) ( ip/2,K) is the partition function of a ferromag

netic Ising model onD with interactionsK.0 and an exter-
nal field ip/2. In writing down Eq.~25!, we have made use
of the identity 2322(E1N* )4E52N21 and the fact that
(vnvn8)

E/25(2 i )N* 5 i N* for N* 5 even. We make the fol-
lowing remarks:

~1! The duality relation~25! has previously been obtaine
by Fradkinet al. @2#, and for the square lattice by Suzuki@4#
and Su¨tõ @11#, and by Au-Yang and Perk@12# in another
context.

~2! The duality relation ~25! is different from the
Kadanoff-Ceva-Merlini scheme@13,14# of replacing K by
K1 ip/2 @corresponding toJ,0 in Eq. ~23!# in the ferro-
02611
e

magnetic model. Suzuki@4# has made the explicit use of th
Kadanoff-Ceva-Merlini scheme in deriving Eq.~25! for the
square lattice. For fully frustrated systems, the Suz
method can be extended to any graph whose dual ad
dimer coverings.

~3! The duality relation~25! holds for a fixed$Si j % with-
out probability considerations and, therefore, differs intrin
cally from that of a spin glass obtained recently by Nishim
and Nemoto@15# using a replica formulation.

~4! The duality relation~25! which holds for any lattice
appears to support the suggestion@3# that all fully frustrated
Ising models belong to the same universality class.

C. The thermodynamic limit

The partition function~25! for an Ising model in a uni-
form field ip/2 can be exactly evaluated for regular lattice
Defining the per-site ‘‘free energy’’

f 5 lim
N* →`

1

N*
ln ZIsing

(D) S i
p

2
,K D , ~26!

Lee and Yang@16# have obtained a closed form expression
f (K) for the square lattice. Their result, which was lat
derived rigorously by McCoy and Wu@17# and others
@14,18#, is

f 5 i
p

2
1C1

1

16p2E
2p

p

duE
2p

p

df ln@z1z2112

24 cosu cosf#, ~27!

where C5@ ln(sinh 2K)#/2, z5e24K. The free energy~27!,
which is the same as that obtained by Villain@1#, is analytic
at all nonzero temperatures.

The solution for the triangular Ising model in a fieldip/2
has also been deduced previously@18,19#. However, it can
also be obtained most simply by observing that the hon
comb lattice, which is the dual of the triangular lattice, ha
coordination number 3. It follows that we can recast the fi
Boltzmann weights aseips j /25 is j5 is j

3 and redistribute the
s j

3 factor at sitej to its three incident edges. Then, as point
out by Suzuki@4#, each edge can be associated with a fac
is is je

Ks is j5e(K1 ip/2)s is j and the desired solution can b
obtained from that of thezero-fieldhoneycomb lattice with
the simple replacementK→K1 ip/2. This gives

f 5 i
p

2
1C1

1

16p2E
2p

p

duE
2p

p

df ln@~11e4K!2

14 cosf~cosu1cosf!#, ~28!

whereC5@ ln(2 sinh 2K)#/2 andK is the Ising interaction on
the honeycomb lattice. Again, there is no finite temperat
phase transition.
1-3
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D. Arbitrary plaquette parities

In a similar fashion, one can extend the above analysi
Ising models with arbitrary face parities. All the steps
previous sections can be carried out, except that for fa
that are not frustrated, we must replacevn by 1 at the cor-
responding dual sites. This results in a zero field~instead of
a field ip/2) at these sites. Thus, for an Ising model w
arbitrary parity configurationG, its dual model has fields 0
and ip/2, respectively, at sites in faces of parity11 and
21. Explicitly, we find

Z~G!52N21~2 i !NF~sinhJ coshJ!E/2ZIsing
(D) ~$hj%,K !,

~29!

where the dual partition function is

ZIsing
(D) ~$hj%,K !5(

$m i %
)
E

eKm im j)
face

ehim i. ~30!

Here,NF is the number of frustrated faces and the exter
field at sitej is hj5 ip/2 or 0 depending on whether the fac
associated with the site is frustrated or not. We give the
lowing remarks:

~1! The duality relation~30! for Ising models with arbi-
trary frustrated plaquettes can be found as contained imp
itly in Ref. @2#.

~2! By writing eips/25 is in the dual partition function,
we see that the partition function of an Ising model withp
frustrated faces is dual to ap-spin Ising correlation function
in zero field. In particular, thep52 correlation problem has
been studied in detail@17#, which now leads to a wealth o
information on the correlation of two frustrated plaquette

II. POTTS SPIN GLASS

Our analysis can be extended to aq-state spin model, the
Potts spin glass. First, we recall the definition of a chi
Potts model. The chiral Potts model, which was conside
in Ref. @5#, is a discreteq-state spin model with a cyclic
Boltzmann factorL(j,j8)5L(j2j8) between two spins a
sites i and j and in statesj i and j j50,1, . . . ,q21. The
interactions areq periodic, namely, the Boltzmann factor sa
isfies

U~j1q!5U~j!. ~31!

The interaction can be symmetric, namely,U(j)5U(2j),
as in the case of the standard Potts model@20#, but in our
considerations, this need not be the case.

A Potts spin glass is a chiral Potts model with rando
interactions. To describe the randomness, one introdu
edge variablesl i j 5l j i 50,1, . . . ,q21 and considers the
partition function@15,21,22#

ZPotts~$l i j %!5 (
j i50

q21

)
E

U~j i2j j1l i j !. ~32!

Note that ifU is symmetric andq52, the partition function
~32! reduces to Eq. ~3!. A plaquette has ‘‘flux’’ r
(50,1,2, . . . ,q21) if @23#
02611
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(
plaq

l i j 5r ~mod q!. ~33!

A set of$l i j % leads to a flux configurationG, which is speci-
fied by the values of the flux for all faces.

A. Gauge transformation

A gauge transformation for the Potts spin glass is
mapping

j i→j i85j i1u i ,
~34!

l i j →l i j8 5l i j 1u i2u j ,

whereu i50,1, . . . ,q21. It is clear that this mapping leave
the flux configurationG unchanged, i.e.,

(
plaq

l i j 5(
plaq

l i j8 . ~35!

Since a global change of allj i by the same amount preserve
$l i j %, the total number of distinct$l i j % consistent with a
particular flux configurationG is qN21. Conversely, any two
sets of$l i j % and $l i j8 % giving rise to the same flux configu
ration are related through a gauge transformation. To see
we start from an arbitrarily chosen site, say site 1, and
u150. Next, we assignu25u11l122l128 to site 2 con-
nected to site 1 by an edge. Continuing in this way as in
Ising case, one eventually determines a set ofu i that trans-
forms $l i j % into $l i j8 %, and vice versa. The bijection betwee
theqN21 configurations ofl i j and gauge transformations fo
a givenG is one to one.

In addition to leaving the flux configuration unchange
gauge transformation also leaves the partition function
variant, namely,

ZPotts~$l i j %!5ZPotts~$l i j8 %!. ~36!

Thus, analogous to Eq.~10!, we have

ZPotts~G!5q2(N21)(
$l i j %

Z~$l i j %!, ~37!

which is used to derive a duality relation. Again, the sum
Eq. ~37! runs through all$l i j % consistent with a given flux
configurationG.

B. Duality relation

In the Potts partition function~32!, we write j i j 5j i
2j j , and to each face having a fluxr, we introduce two
factors,

1

q (
m50

q21

e2 i2pm(j121j231•••1jn1)/q

3H 1 if j121•••1jn150 ~mod q!

0 otherwise,
1-4
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1

q (
n50

q21

e2 i2pn(l121l231•••1ln12r )/q

3H 1 if l121•••1ln15r ~mod q!

0 otherwise.
~38!

This permits us to sum overj i j andl i j independently. Thus
analogous to Eq.~15!, we obtain

ZPotts~G!5q2E2N* (
$m%

(
$n%

B~m,n;m8,n8!, ~39!

where

B~m,n;m8,n8!5(
l

(
j

U~j1l!expF i2p

q S 2~m2m8!j

2~n2n8!l1
rn

n
1

r 8n8

n8 D G , ~40!

and n,n8 are the numbers of sides of the two plaquet
containing$m,n% and $m8,n8%, and fluxesr and r 8, respec-
tively.

We carry out the summations in Eq.~40! after introducing
the Fourier transform

U~j1l!5
1

q (
h50

q21

L~h!ei2ph(j1l)/q, ~41!

where L(h) are the eigenvalues of the matrixU @5#. One
obtains

B~m,n;m8,n8!5qdm2m8,n2n8L~n2n8!

3ei2prn/qnei2pr 8n8/qn8. ~42!

In the above equation,dm2m8,n2n8 sets m2m8 to n2n8
~mod q).

The substitution of Eq.~42! into Eq. ~39! followed by
summing overm now yields the result
.

e

02611
s

ZPotts~G!5q12N* ZPotts
(D)~$hj%,L!, ~43!

where

ZPotts
(D)~$hj%,L!5(

$n i %
F)

E
L~n i ,n j !GF)

face
ehjn j G ~44!

is the partition function of a chiral Potts model on the du
graph D, which generalizes Eq.~29! to Potts spin glasses
The dual chiral Potts model has Boltzmann weigh
L(m i , m j )5L(m i2m j ) and external fields

hj5 i
2pr j

q
, j 51,2, . . . ,N* , r j50,1, . . . ,q21

~45!

on the spin in plaquettej which has a fluxr j . When r j50
for all j, Eq. ~43! reduces to the duality relation for the zer
field chiral Potts model given by Eq.~13! in Ref. @5#.

III. SUMMARY

We have obtained duality relations for planar Ising a
chiral Potts models on arbitrary graphs and with fix
plaquette parity or flux configurations. Our main results a
the equivalences~25! for the fully frustrated Ising model, Eq
~29! for the Ising model with arbitrary plaquette parity, an
Eq. ~43! for the chiral Potts model with arbitrary flux con
figurations. In all cases, the dual models have pure imagin
fields applied to spins in plaquettes that are frustrated an
having a nonzero flux.
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