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Duality relation for frustrated spin models
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We consider discrete spin models on arbitrary planar graphs and lattices with frustrated interactions. We first
analyze the Ising model with frustrated plaquettes. We use an algebraic approach to derive the result that an
Ising model with some of its plaquettes frustrated has a dual model which is an Ising model with an external
field i7/2 applied to the dual sites centered at frustrated plaquettes. In the case where all plaquettes are
frustrated, this leads to the known result that the dual model has a uniform#i&dwhose partition function
can be evaluated in the thermodynamic limit for regular lattices. The analysis is extended to a Potts spin glass
with analogous results obtained.
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I. THE FRUSTRATED ISING MODEL glass[1]. As the parity of the infinite face is the product of
the parities of all plaquettes, the parity of the infinite face in
A central problem in the study of lattice-statistical prob- a totally frustrated Ising model is 1 for N* = even and+ 1
lems is the consideration of frustrated spin systése®, for for N* = odd. An example of a full frustration is the trian-

example, Refd.1-4]). A particularly useful tool in the study gular model withS;;= —1 for all nearest neighbor sités .
of spin systems is the consideration of duality relatitGsese, The values of parity associated with all plaquettes define a
for example, Refd5,6]). Here, we apply the duality consid- “parity configuration” which we denote by’. The set of
eration to frustrated discrete spin systems. interactions{S;;} corresponding to a giveh is not unique.

We consider first the Ising model on ambitrary planar  For the triangular model, for example, af$;} which has
graphG. A planar graph is a collection of vertices a@bn-  either one or thre&;=—1 edges around every plaquette is

crossing edges. Place Ising spins at vertices@f which  totally frustrated. For a give{fS;} andI’, the partition func-
interact with competing interactions along the edges. Denotéon is the summation

the interaction between sitesaindj by —J;;= —S§;;J, where
Sj==1 andJ>0. Then the Hamiltonian is

zdsip= 2 - X I e, @

o=*1 on=*1 E
H(o;8)=— 2 Sjdajo;, )
{i.j) where the product is taken over tBeedges ofG.

whereo;= £ 1 is the spin at the siteand the summation is _
taken over all interacting pairs. A. Gauge transformation

The Hamiltonian(1) plays an important role in condensed A gaugetransformation is site-dependent redefinition of
matter physics and related topics. Regardig as a the up(down) spin directions. Mathematically, a gauge trans-

quenched random variable governed by a probability distriformation transforms the spin variables accordingp
bution, the Hamiltoniar(1) leads to the Edwards-Anderson
model of spin glassef7]. By taking a differentS;;, the oi—o=wjo;, i=1,...N. (4)
Hamiltonian becomes the Hopfield model of neural networks
[8]. Here, we consider the Hamiltoniafl) with fixed  Inthe above, ifw;=+1, the original definition of ugdown)
plaquette frustrations. spin directions is maintained, andvif = — 1, the definitions

Let G haveN sites andE edges. Then it has of up (down) are exchanged. Under the gauge transforma-

) tion, theS;; in Eq. (1) transforms as follows:
N*=E+2—N (Euler relation (2

faces, including one infinite face containing the infinite re- Si—Sp=wiSw; - Vi ©
gion and N*—1 internal faces which we refer to as
plaquettes. The parity of a face is the product of the egjge
factors around the face which can be eithet or —1. A
face isfrustratedif its parity is —1. An Ising model is frus- H(o;S)=H(a";S'). (6)
trated if any of its plaquettes is frustrated, and is fully-
tally) frustrated if every plaguette is frustrated. The fully Clearly, the gauge transformatidb) leaves the parity con-
frustrated model is also known as the odd model of the spifigurationI’ unchanged, i.e.,

Sincew’=1, we have
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, factor (1-11S;)/2 and sum overS;==*1 independently.
1L Sij:fl;!e Sj V face. (7)  Similarly, writing o;;=0y0;, we can replace summations
overoj=*1in Eq.(10) by o;=*1 by introducing a factor
For each parity configuratiol’, there are 9~ different ~ (1+1Il0yj)/2 to each face. Thus, E¢L0) becomes
{Si;} patterns consistent with it. To see this we note in Eq. N
J E . , 2.2 (N—-1)
(5), each of the. choices of.{wi} leads to a new S} Zee= . D [H eSijaijd
except the negation of all; which leavesS;;} unchanged. 22N {oy {Sj1E
Conversely, any two sets of interactiof§;} and{Sj;} for
the samd” are related by a gauge transformation which can <11 <1+ 11 i) ) ( 1-1] S;
be constructed as follows. Starting from any spin, say spin 1, face
assign the valuev,=+1. One next builds up the graph by ) )
adding one sitéand one edgeat a time. To the site 2 con- where the subscript FF denotes full frustration, and the extra
nected to 1 by the edggl2}, one assigns the factaw, factor 2 in Eq.(11) is due to the 2»1 mapping fromo; to
=w, S;, S;,, which yieldsw; S;w,=S], consistent to Eq. i - _ _ .
(5). Proceeding in this way around a plaquette until an edge, For a face having sides, we rewrite the face factors as
say{nl}, completes a plaquette. At this point, one has

, 11

1+11 o= 2 11 F(oyj i), (12)

u==x
WnSnlwlz( I1 Sij)( I1 Si,j) =S, (8
plaquette plaquette
1- i = G(S;v), 13
which is again consistent to E¢p). Continuing in this way, H Sy vzi H (Sy) 13

one constructs allv; which transform{S;;} into {S/;}. Note

that if we had started witiv; = — 1, we would have resulted Where each product hasfactors

in the negation of alw;. Thus, the bijection between the E(ou)=6 . +08
2N"1 sets{S;} and 2'~! gauge transformations is one to (O3 )=Ops ¥ 00y (14)
one. . G(S;¥)= 8,4 +Swnd,,

In addition to Eq.(7), the gauge transformation also
leaves the partition function invariaf®,10], i.e., 5 is the Kronecker delta function, and,=(—1)""

:e*iﬂ/n.
Z(IS 1) = eSijJoioj = eSidolol — 715, We now regardu and v as indices of two Ising spins
(S {E(r} 1;[ {(2,;} 1;[ J 1=2( ”}) residing at each dual lattice site. After carrying out summa-

9 tions overc;; andS;;, the partition function(11) becomes

As a result, the partition function only dependslorand we

can rewrite Eq(3) as ZFF:27E7N*{E} {2; 1;[ B(u,viu',v'), (15
w v
Z(F):Z—(N—l)E zds:H (10) where we have made use of the Euler relatipnandB is a
{s;} e Boltzmann factor given by
where the summation is over all2* distinct{S;;} consis- o, ST .
tent with the parity configuratiod for the same partition Blu,vipn',v )_U;ﬂ S;ﬂ e Flon)
function. This expression of the partition function is used to
derive the duality relation in ensuing sections. XF(on")G(Sv)G(S;v').  (16)

Here, G(S;v') is given by Eg. (14) with w,—w,

o . o =e '™ and the two faces containing spirfg,»} and
For our purposes, it is instructive to consider first the case ;, '} have, respectivelyy andn’ sides.

of full frustration. Duality properties of fully frustrated Substituting Eq(14) into Eq.(16) and making use of the

model have previously been considered by a number of aygentities

thors[2,4] for regular lattices. We present here an alternate

B. The fully frustrated Ising model

formulation applicable to arbitrary graphs and arbitrary frus- Oy Oyt 0, 0, =L+uu)l2,
tration. (17
The grapiD dual toG hasN* sites each residing in a face Our Oy -+, 8,y =L—pu)2,

of G, andE edges each intersecting an edgesof/Ve restrict

to N* = even so that all faces @ including the infinite face

are frustrated. This restriction has no effect on the taking of N / i
S ) 2 U B(u, v, v )=2A(1+ coshl+2B(1— sinhJ,

the thermodynamic limit in the case of regular lattices. Since (wovip'sv') (L1t pu’) (=pu’) (18)

the signsS;; around each face are subject to the constraint

I1S;=—1, we introduce in the summand of E4O) a face = where

one obtains
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A: 5v+ 5Vr+ + [OFNONY 51/— 51}’— y

(19
B= wnﬁv_ 5V/+ + wn/5,,+ 51}’— .
states{u,v}={+,+}{—,-},

We number the four

{—,+}{+,—} by 1,2,3,4, respectively. The Boltzmann fac-

tor (18) can be conveniently written as ax44 matrix

By B, O 0
B( oy, ,)_ BZl BZZ 0 (20)
PRECTTT 00 0 By By
where
Bi;=4 cosh], Bji,=4w,:sinhJ,
(21)

le=4wnsith, 822:4wnwanOSh\]-

Thus, the partition function of thgu, v} spin model is twice

that of an Ising model on the dual lattice. The exchange

coupling constanK and the magnetic fieldh in the dual
model are determined by

By, = DK+ (hm)+(n'/n") By,= DeK+(h/m)—(h'/n’).

(22)

B,= De K- (W +(h'm’) B,,= DeK—(hm)—(h"/m’).

Here,n andn’ are the number of edges incident at the two

dual sites, respectively.
The solution of the above equations gives

D =4(wyw, )?\sinhJ coshJ,

e ?K=tanhJ>0,

. o (23
e2(h/n)=l/wn=e|ﬂ-/n1 e2(h n )zl/wnlzelﬂ/n ,
or equivalently
1 i
K=—§In(tath) and h=h’=?. (29
Thus, we have established the equivalence
x . LT
Ze(3)=2N"1N"(sinhJ coshJ)E’Zng,Zg(lg,K>, (25)

whereZ(Q) (im/2K) is the partition function of a ferromag-

netic Ising model oD with interactionsK>0 and an exter-

nal fieldi#/2. In writing down Eq.(25), we have made use

of the identity 2<2 (E*NI4E=2N-1 anq the fact that
(w,0,)E2=(—1)N"=iN" for N* = even. We make the fol-
lowing remarks:

(1) The duality relation(25) has previously been obtained

by Fradkinet al.[2], and for the square lattice by Suzuiki
and Sto [11], and by Au-Yang and Perkl2] in another
context.

(2) The duality relation (25) is different from the
Kadanoff-Ceva-Merlini schemg13,14 of replacingK by
K+im/2 [corresponding taJ<0 in Eg. (23)] in the ferro-
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magnetic model. Suzuk#] has made the explicit use of the
Kadanoff-Ceva-Merlini scheme in deriving E@5) for the
square lattice. For fully frustrated systems, the Suzuki
method can be extended to any graph whose dual admits
dimer coverings.

(3) The duality relation(25) holds for a fixed{S;;} with-
out probability considerations and, therefore, differs intrinsi-
cally from that of a spin glass obtained recently by Nishimori
and Nemotd 15] using a replica formulation.

(4) The duality relation(25) which holds for any lattice
appears to support the suggesti@hthat all fully frustrated
Ising models belong to the same universality class.

C. The thermodynamic limit

The partition function(25) for an Ising model in a uni-
form field i w/2 can be exactly evaluated for regular lattices.
Defining the per-site “free energy”

. 1 o7
f= lim N—*InZIsing i=,K|, (26)

N* — o0 2

Lee and Yand16] have obtained a closed form expression of
f(K) for the square lattice. Their result, which was later
derived rigorously by McCoy and WU§17] and others
[14,18, is

f=iZic 1f”df”d| 14
_IE+ +W _70_7¢n[z+z +

(27)

—4 cosf cosg¢],

where C=[In(sinh K)]/2, z=e %K. The free energy27),
which is the same as that obtained by Villai, is analytic
at all nonzero temperatures.

The solution for the triangular Ising model in a field/2
has also been deduced previougly,19. However, it can
also be obtained most simply by observing that the honey-
comb lattice, which is the dual of the triangular lattice, has a
coordination number 3. It follows that we can recast the field
Boltzmann weights as'™i”?=i oj=i af’ and redistribute the
af‘ factor at sitg to its three incident edges. Then, as pointed
out by Suzuki4], each edge can be associated with a factor
ioyojefi7i=eK+172)9i%) gnd the desired solution can be
obtained from that of theero-fieldhoneycomb lattice with
the simple replacemeit— K +i#/2. This gives

f=i3+c+ir defw deb In[(1+e*)?2
2 1672 . )

+4 cos¢(cosh+cosg)], (29

whereC=[In(2 sinh K)]/2 andK is the Ising interaction on
the honeycomb lattice. Again, there is no finite temperature
phase transition.
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D. Arbitrary plaguette parities

In a similar fashion, one can extend the above analysis to mzaq Nj=r (mod g). 33

Ising models with arbitrary face parities. All the steps of

previous sections can be carried out, except that for face& set of{\;;} leads to a flux configuratiohi, which is speci-
that are not frustrated, we must replasg by 1 at the cor- fied by the values of the flux for all faces.

responding dual sites. This results in a zero fighdtead of

a field i7/2) at these sites. Thus, for an Ising model with A. Gauge transformation
:L%tiri;é,pfgggeCC?S/Z?; rzttlosril;éslt?ndfl;ile;n(())?eplar;;}sllﬂzlgj 0 A gauge transformation for the Potts spin glass is the

— 1. Explicitly, we find mapping

Z(T) =2N%(~i)Ne(sinhJ coshd) E222) ({h },K), S—o& =810,
(29 : (34
)\ij*))\ij:)\i] + 9i_ 01 y
where the dual partition function is
where#,=0,1, ... g—1. Itis clear that this mapping leaves

ng%g({hj}vK)zz 1—[ eK“i“JH i (30 the flux configuratiod™ unchanged, i.e.,
{ni} E face
Here,Ng is the number of frustrated faces and the external %q Nij= %q Aij - (39

field at sitej is h;=i/2 or 0 depending on whether the face
associated with the site is frustrated or not. We give the folSince a global change of & by the same amount preserves
lowing remarks: {\ij}, the total number of distincf\;;} consistent with a
(1) The duality relation(30) for Ising models with arbi- particular flux configuratiod™ is gN~1. Conversely, any two
trary frustrated plaquettes can be found as contained implicsets of{\;;} and{\/;} giving rise to the same flux configu-
itly in Ref. [2]. o L _ ration are related through a gauge transformation. To see this,
(2) By writing '"'*=io in the dual partition function, e start from an arbitrarily chosen site, say site 1, and set
we see that the partition function of an Ising model with 9,=0. Next, we assignd,=6;+\,—\}, to site 2 con-
frustrated faces is dual togspin Ising correlation function o ted to site 1 by an edge. Continuing in this way as in the
in zero field. In particular, the=2 correlation problem has Ising case, one eventually determines a seé,ahat trans-

been studied in detajll7], which now leads to a wealth of forms{\;;} into {\/;}, and vice versa. The bijection between

information on the correlation of two frustrated plaquettes. theqN~* configurations oh;; and gauge transformations for

a givenI is one to one.
Il. POTTS SPIN GLASS In addition to leaving the flux configuration unchanged,

Our analysis can be extended tgratate spin model, the 9auge transformation also leaves the partition function in-
Potts spin glass. First, we recall the definition of a chiralvariant, namely,
Potts model. The chiral Potts model, which was considered ,
in Ref. [5], is a discreteg-state spin model with a cyclic Zpoud{Nij}) = Zpord {Nij})- (36)
Boltzmann factorA (£,£')=A(&—¢') between two spins at
sitesi andj and in statesf; and §;=0,1,...g—1. The
interactions are periodic, namely, the Boltzmann factor sat-

isfies Zpott4F)=q’(N’1’{E} Z({\igh), (37)
Xij

U(E+q)=U(é). 31 o . . : : .
which is used to derive a duality relation. Again, the sum in

The interaction can be symmetric, namelif£)=U(—£),  Eq. (37) runs through alf\;;} consistent with a given flux
as in the case of the standard Potts md@@l, but in our  configurationr .

considerations, this need not be the case.

A Potts spin glass is a chiral Potts model with random
interactions. To describe the randomness, one introduces - _ _
edge variables\;j=\;;=0,1,...g—1 and considers the  In the Potts partition function32), we write &;=¢;

Thus, analogous to E@10), we have

B. Duality relation

partition function[15,21,23 —¢;, and to each face having a flux we introduce two
factors,
q-1
)= £ . q-1
ZPotti{Au}) giE:O 1;[ U §J+)\|J)- (32 1 z e i2mu(éyot &ogt - +én1)/d
q z=o
Note that ifU is symmetric andj=2, the partition function . B
(32) reduces to Eq.(3). A plaquette has “flux” r % 10 &t +£m=0 (mod q)
(=0,1,2...,9-1) if [23] 0 otherwise,
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q-1
2 e 12mv(Nat Aozt F A —1)g
v=0

No iy

1
0 otherwise.

|f )\12+ e +)\n1:r (mOd q)
(38)

This permits us to sum ove; and\;; independently. Thus,
analogous to Eq(15), we obtain

zpomm:qf*“*{z} ; B(u,vip',v'), (39
y73 v

where

i2
Bluvin' v)=2 2 U<§+>\>exp['7”(—w—ﬂ'>f

! !

rv rv)

—(V—V’))\+F+T (40)
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Zpord 1) =04 N Zpoud®({h;},A), (43)

where

[T en

face

ZPotts(D)({hj}yA):{;} (44

1T Atw,vp)
E

is the partition function of a chiral Potts model on the dual
graph D, which generalizes Eq29) to Potts spin glasses.
The dual chiral Potts model has Boltzmann weights
A(uis pj)=A(ui—pj) and external fields

hj=i——, j=1.2,...N%,

ri=01,...9-1
(49
on the spin in plaquettewhich has a flux;. Whenr;=0

for all j, Eq. (43) reduces to the duality relation for the zero-
field chiral Potts model given by E@13) in Ref. [5].

and n,n’ are the numbers of sides of the two plaquettes

containing{u, v} and{x’,v'}, and fluxesr andr’, respec-
tively.
We carry out the summations in E@0) after introducing
the Fourier transform
19! .
(g =g 2 A(pe2menis, (41)
7n=0

where A(%) are the eigenvalues of the matrix [5]. One
obtains

B(,LL,V;M’,V’):qﬁlu,}uyv,yrA(V— V’)
XeiZwrulqneiZn-r’v’/qn’. (42)
In the above equationg,
(modq).
The substitution of Eq(42) into Eq. (39) followed by
summing overw now Yields the result

» setsu—u' to v—v'

—u' v—v

lIl. SUMMARY

We have obtained duality relations for planar Ising and
chiral Potts models on arbitrary graphs and with fixed
plaguette parity or flux configurations. Our main results are
the equivalence&5) for the fully frustrated Ising model, Eq.
(29) for the Ising model with arbitrary plaquette parity, and
Eq. (43) for the chiral Potts model with arbitrary flux con-
figurations. In all cases, the dual models have pure imaginary
fields applied to spins in plaquettes that are frustrated and/or
having a nonzero flux.
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